

Industrial IoT

Advantech GPIO

Windows KMDF Driver

User Manual

For Windows

Version <1.00>

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 2

Revision History
Date Version Description

2022/07/05 0.92 Change the format of revision history

2016/08/16 0.91 Update hyperlinks

2016/02/24 0.90 Initial draft

2023/3/16 1.00 1.Software Utility

2. Installation

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 3

Table of Contents

1. Welcome to Advantech GPIO Windows KMDF Driver 5

1.1 About This Manual 5

1.2 Organization of This Manual 5

2. Advantech GPIO Windows KMDF Driver Overview 8

2.1 Environments 9

2.1.1 GPIO 9

2.2 Product Features 9

2.3 Installation 10

2.3.1 Install KMDF Driver 10

2.4 Uninstallation 12

2.4.1 Uninstall KMDF Driver 12

3. Getting Started with Advantech GPIO Windows KMDF Driver 15

3.1 For Microsoft Visual C++ 15

3.1.1 Create an Empty Visual C++ Project 15

3.1.2 Adding Necessary File 17

3.1.3 Writing Codes 18

3.1.4 Test Your Program 18

3.2 For Microsoft Visual Studio 2015 Smart Device 19

3.2.1 Create an Empty Virtual C++ Smart Device Project 19

3.2.2 Include Necessary File 20

3.2.3 Writing Codes 21

3.2.4 Test Your Program 21

4. Programming Guide 22

5. Function Reference 23

5.1 Function Description 23

5.1.1 CreateFile 23

5.1.2 CloseHandle 26

5.1.3 DeviceIoControl 28

5.2 CTL_CODE 29

5.2.1 IOCTL_ADVGPIO_GET_COUNT 29

5.2.2 IOCTL_ADVGPIO_GET_DIR 32

5.2.3 IOCTL_ADVGPIO_SET_DIR 34

5.2.4 IOCTL_ADVGPIO_GET_STATUS 36

5.2.5 IOCTL_ADVGPIO_SET_STATUS 39

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 4

5.3 Data Structure 42

5.3.1 ADVGPIO_DIR_DATA 42

5.3.2 ADVGPIO_STATUS_DATA 42

6. Software Utility & Programming Examples 44

6.1 Advantech GPIO Utility 44

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 5

User Manual

1. Welcome to Advantech GPIO Windows KMDF

Driver

1.1 About This Manual

This manual contains the information for getting started with the Advantech GPIO Windows

KMDF Driver.

This manual supplies information about driver interfaces of Advantech GPIO device,

including calling procedure of operating GPIO device and descriptions of each function,

parameter, and data structure.

This manual contains step-by-step instructions for building applications with the GPIO

Device Driver with Microsoft Visual C++ and Microsoft Visual C++ 2015 Smart Device.

With the help of Advantech GPIO Driver, you can develop applications by tools like VC++

and VC++ Smart Device in different Windows operating systems (Windows

XP/7/8/8.1/10/Embedded Standard).

This manual also provides examples for Advantech GPIO Windows KMDF Driver, explaining

how to use the driver with series of real examples and offering a reference for you to

develop your own applications.

This manual does not show you how to solve every possible programming problem. Before

getting started, you should already be familiar with at least one of the supported

programming environments and Windows XP/7/8/8.1/10/Embedded Standard.

1.2 Organization of This Manual

This user manual is divided into the following sections:

• Welcome to Advantech GPIO Windows KMDF Driver

• Advantech GPIO Windows KMDF Driver Overview

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 6

• Getting Started with Advantech GPIO Windows KMDF Driver

• Programming Guide

• Function Reference

• Software Utility & Programming Examples

Welcome to Advantech GPIO Windows KMDF Driver

This section gives you a basic concept of this manual.

Advantech GPIO Windows KMDF Driver Overview

This section gives you a basic concept of Advantech GPIO Windows KMDF Driver.

Getting Started with Advantech GPIO Windows KMDF Driver

This section gives the beginner a clear concept of the Advantech GPIO Windows KMDF

Driver and a walk-through in creating a simple application. Step-by-step instructions are

given for an application written in MFC and Visual C++ 2015 MFC Smart Device

development environments.

Programming Guide

This section shows a basic code flow for the GPIO control and management.

Functions Reference

• Function Description

This section gives a brief introduction of each function (WINDOWS Native API) used in

current development.

• CTL_CODE

This section describes all the control codes the Advantech GPIO Windows KMDF driver

supports.

• Data Structure

This section describes the data structures that related to the functions we provide.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 7

Programming Examples

This section gives an overview of the examples we provide.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 8

2. Advantech GPIO Windows KMDF Driver Overview

The Advantech GPIO Windows KMDF Driver provides functions to maximize the hardware's

performance. It is freely bundled with the Advantech GPIO Device.

The driver allows you to easily perform versatile GPIO operations in programs developed

with tools like Microsoft Visual C++ 6.0, Visual C++ 2015 (Smart Device), and other

programming languages in different Windows operating systems. By using this Driver, you

don't have to use hardware-specific register commands.

The driver also provides a sample application. You can modify the sample application to

meet your needs.

The usage of KMDF is in the following aspects:

• Driver Installation

You can refer to Install KMDF Driver to install the driver.

• Driver Uninstallation

You can refer to Uninstall KMDF Driver to uninstall the driver.

• Development Kit Installation

None.

• Interface

1. The device interface name is

\\\\.\\AdvGPIODev

Function involved: CreateFile

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 9

2.1 Environments

2.1.1 GPIO

2.1.1.1 Hardware

It supports only Advantech IAG x86 hardware platform products with GPIO design; please

see the release notes to check the support list before using it.

2.1.1.2 Operating Systems

􀂄 Windows Embedded Standard 2009

􀂄 32-bit/64-bit Microsoft Windows 7/8/8.1/10

􀂄 32-bit/64-Bit Windows Embedded Standard 7

􀂄 32-bit/64-Bit Windows Embedded 8 Standard

􀂄 32-bit/64-Bit Windows Embedded 8.1 Industry Pro

􀂄 32-bit/64-Bit Windows 10 Enterprise 2015 LTSB

2.1.1.3 Common Driver

The GPIO Driver is based on common driver (AdvCOMMON).

2.2 Product Features

The Advantech GPIO Windows KMDF driver mainly includes the following features:

• GPIO Information:

o GPIO Count:

Driver will enumerate GPIO and counts the total number of GPIO pins.

o GPIO Direction:

Gets the current direction setting of each GPIO pin. Input(1) or Output(0)

o GPIO Status:

Reads the current status of each GPIO pin. 1-On/High or 0-Off/Low.

• GPIO Configuration

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 10

o GPIO Direction Control

GPIO can be configured as either Input (1) or Output (0).

o GPIO Status Configuration

Programming the 1-On/High or 0-Off/Low status of the output type GPIO.

• GPIO Tool Example Source Code

o A tool to control GPIO.

You can use it to configure the GPIO.

o Example programs

The example programs can be used for the reference of software development.

2.3 Installation

2.3.1 Install KMDF Driver

Installation is required. If there is no existing installation of Advantech GPIO Windows KMDF

driver on your computer, take the following steps to install Advantech GPIO Windows KMDF

driver.

How to install Advantech GPIO Windows KMDF driver

1) Verify that your computer meets the hardware and software requirements to run

Advantech GPIO Windows KMDF driver.

For more information, see Environments.

2) If you do not already have a copy of the installer Advantech GPIO Windows KMDF

driver, download the installer.

3) From Control Panel, remove any existing installation of Advantech AdvEC driver and

GPIO driver from your computer.

4) With administrator-level privilege on your computer, run the installer for Advantech

GPIO Windows KMDF driver.

Below is an example of Advantech GPIO Windows KMDF driver Setup. If you want to stop

the setup, press the “Cancel” button in the setup program. The Setup program will stop the

procedure automatically.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 11

1. Run the Setup program.

2. When the setup program is running, click the “Next” button.

3. Allow this app to make changes, answer “YES”. And wait for completion.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 12

4. Click the “Restart” button to finish the installation of Advantech GPIO Windows KMDF

driver.

2.4 Uninstallation

2.4.1 Uninstall KMDF Driver

How to uninstall Advantech GPIO Windows KMDF driver

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 13

1. Control panel ->”App & features”. Choose the Advantech GPIO Driver to Uninstall it.

2. Allow this app to make changes ... , answer “Yes”, then click “Uninstall”

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 14

3. The uninstallation is running. Please wait for completion.

4. Click the “Restart” button to finish the uninstallation of Advantech GPIO Windows KMDF

driver.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 15

3. Getting Started with Advantech GPIO Windows

KMDF Driver

This chapter provides a step-by-step example to demonstrate how to build an application

using Advantech GPIO Windows KMDF Driver from scratch in Microsoft Visual C++ 6.0 and

Microsoft Visual Studio 2015.

The following is the necessary file for programming:

• AdvGPIO_IOCTL.h: Function declaration, constant definition for Microsoft Visual C++ 6.0

or Microsoft Visual Studio 2015 Smart Device Project.

3.1 For Microsoft Visual C++

3.1.1 Create an Empty Visual C++ Project

To use the GPIO functions, follow this procedure:

1. Create your source files as you would for other Windows programs written in C++ by

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 16

calling DLL functions as typical function calls.

2. Include the header file, as shown in the following example:

#include "AdvGPIO_IOCTL.h"

(Installation C:\Program Files\Advantech\AdvGPIO\Examples\VC++\AdvGPIOTool

\AdvGPIO_IOCTL.h)

For a general outline of creating a Visual C++ Windows programs, complete the following

procedure:

1. Click File/New from the main menu to create your application project and source code as

you work on any other Visual C++ program.

2. Define the type of new project as "MFC AppWizard (exe)", and assign a project file

directory

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 17

Run through the wizard to create the new project from Empty.

3.1.2 Adding Necessary File

In order to develop GPIO applications for Advantech GPIO Windows KMDF Driver, you have

to firstly add necessary file.

1. Include the Advantech GPIO Windows KMDF Driver for Visual C++ header files

(AdvGPIO_IOCTL.h). The header file is located in where your KMDF example installed, like

the following example:

C:\Program Files\Advantech\GPIO\Examples\VC++\AdvGPIOTool.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 18

After adding the header file, you can view the GPIO constant definition, parameter

declaration, and IO control codes that are defined in this header file. These definitions can

all be used in your application programs.

3.1.3 Writing Codes

Write your application source code. For more detailed program development information,

please refer to the Visual C++ User's Manual.

3.1.4 Test Your Program

1. Click on Compile under the Build menu to compile your code.

2. Run your saved ***.exe on you target platform.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 19

3.2 For Microsoft Visual Studio 2015 Smart Device

3.2.1 Create an Empty Virtual C++ Smart Device Project

For a general outline of creating a Virtual C++ Smart Device programs, complete the

following procedure:

1. Click File/New from the main menu to create your application project and source code as

you would for any other Visual C++ Smart Device program.

2. Define the type of new project as "MFC Application", assign a project file directory

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 20

Run through the wizard to create the new project from Empty.

3.2.2 Include Necessary File

In order to develop GPIO applications with Advantech GPIO Windows KMDF Drivers, you

have to firstly add necessary file.

1. Include the Advantech GPIO Windows KMDF Driver for Visual C++ Smart Device header

files AdvGPIO_IOCTL.h. The header file is located in where your SDK installed, like following

example:

C:\Program Files\Advantech\GPIO\Examples\VC++\AdvGPIOTool.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 21

After adding the header file, you can view the GPIO constant definition, parameter

declaration, and IO control codes that are defined in this header file. These definitions can

all be used in your application programs.

3.2.3 Writing Codes

Write your application source code. For more detailed program development information,

please refer to the Microsoft Visual Studio 2015 User's Manual.

3.2.4 Test Your Program

1. Click on Compile under the Build menu to compile your code.

2. Run your saved ***.exe on you target platform.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 22

4. Programming Guide

User can directly access drivers with WINDOWS Native API. In the following, we will provide

an example by opening GPIO device and reading its current status to explain how to write

basic applications in VC environment. Necessary files for developing applications are listed

below. Suppose installation paths of all header files in the example are C:\Program

Files\Advantech\GPIO\Examples\VC++\AdvGPIOTool.

Device Function Group

The following figure describes the common call flow of the GPIO which is necessary for all

GPIO operation:

Device Handle

Device Handle

Open GPIO Device by

using CreateFile

Operate GPIO Device by

using DeviceIoControl

Close GPIO Device by

using CloseHandle

End

Start

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 23

5. Function Reference

Advantech's GPIO Windows KMDF Driver contains a set of control codes and associated

structures that can be used in various applications. The control codes support many

development environments and programming languages, including Microsoft Visual C++

Program and Microsoft Visual C++ Program.

5.1 Function Description

You can manipulate GPIO through the WINDOWS Native APIs, thus make you use the GPIO

device through their existing application and examples without any change.

In your application, use the CreateFile function to open GPIO device; call the

DeviceIoControl function to send a control code directly to the Advantech GPIO Windows

KMDF driver, causing the GPIO device to perform the corresponding operation; call the

CloseHandle when operation is completed to close the opened GPIO device.

The following tables describe the main WINDOWS Native APIs are used in current

development.

Item Name Note

1) CreateFile Open GPIO device.

2) CloseHandle Close the opened GPIO device when operation is completed.

3) DeviceIoControl Send a control code directly to the GPIO device driver.

Only brief introduction is given in this manual regarding detailed usage of each function.

Notes are made to notify you important operation. For more detailed information about the

usage, please see MSDN.

5.1.1 CreateFile

You can use the CreateFile function to open GPIO device. The function returns a handle

that can be used to access the GPIO device.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 24

Syntax

HANDLE CreateFile(

 LPCTSTR lpFileName,

 DWORD dwDesiredAccess,

 DWORD dwShareMode,

 LPSECURITY_ATTRIBUTES lpSecurityAttributes,

 DWORD dwCreationDisposition,

 DWORD dwFlagsAndAttributes,

 HANDLE hTemplateFile

);

Parameters

Name Direction Description

lpFileName Input [in] A pointer to a null-terminated string that specifies

the name of the GPIO device to open.

*Note

Use \\\\.\\AdvGPIODev.

dwDesiredAccess Input [in] The access to the GPIO device, Ways of opening

the GPIO device, which is usually GENERIC_READ |

GENERIC_WRITE.

dwShareMode Input [in] The sharing modes of the GPIO device, which can

be read, write, both, or none. Which is usually

FILE_SHARE_READ | FILE_SHARE_WRITE.

lpSecurityAttributes Input [in] A pointer to a SECURITY_ATTRIBUTES structure

that determines whether or not the returned handle can

be inherited by child processes.

*Note

The handle cannot be inherited. It must be set to

NULL.

dwCreationDisposition Input [in] An action to take on files that exist and do not

exist, which is usually OPEN_EXISTING.

dwFlagsAndAttributes Input [in] The file attributes and flags.

*Note

The GPIO device is not being opened or created for

asynchronous I/O. It must be set to 0.

hTemplateFile Input NULL

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 25

Return Value

If the function succeeds, the return value is an open handle to the GPIO device. If the

function fails, the return value is INVALID_HANDLE_VALUE. To get extended error

information, call GetLastError function.

Remarks

Use the CloseHandle function to close the opened GPIO device handle that CreateFile

returns when operation is completed.

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Open the GPIO Device

// ---

//--

// Function : GPIO_DeviceOpen

//

// PURPOSE : Open the GPIO Device

//

// Parameters : DriverHandle (OUT)

// Handle of device

//

// Return : NULL and DriverHandle (success)

//

//--

HANDLE GPIO_DeviceOpen()

{

 HANDLE DriverHandle = NULL;

 TCHAR GPIOName[20] = TEXT("\\\\.\\AdvGPIODev");

 DriverHandle = CreateFile(

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 26

 GPIOName,

 GENERIC_READ | GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 0,

 NULL);

 return DriverHandle;

}

See Also

CloseHandle

5.1.2 CloseHandle

Close the GPIO device by calling this function when operation is completed.

Syntax

BOOL CloseHandle(

 HANDLE hObject

);

Parameters

Name Direction Description

hObject Input [in] Handle to the GPIO device which was opened.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call

GetLastError function.

Example Code

#include "Tchar.h"

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 27

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Close the GPIO Device

// ---

//--

// Function : GPIO_DeviceClose

//

// PURPOSE : Close GPIO Device by handle.

//

// Parameters : DriverHandle (IN)

// Handle of device

//

// Return : TRUE (success)

//

//--

BOOL GPIO_DeviceClose (HANDLE DriverHandle)

{

 if (DriverHandle != INVALID_HANDLE_VALUE)

 {

 CloseHandle(DriverHandle);

 // reset DeviceHandle

 DriverHandle = NULL;

 }

 return TRUE;

}

See Also

CreateFile

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 28

5.1.3 DeviceIoControl

User can use the DeviceIoControl function to send a control code directly to the GPIO

device driver, causing the GPIO device to perform the corresponding operation. Such as

configure GPIO direction, get GPIO current direction, configure GPIO status, get current

GPIO status, etc.

Syntax

BOOL DeviceIoControl(

 HANDLE hDevice,

 DWORD dwIoControlCode,

 LPVOID lpInBuffer,

 DWORD nInBufferSize,

 LPVOID lpOutBuffer,

 DWORD nOutBufferSize,

 LPDWORD lpBytesReturned,

 LPOVERLAPPED lpOverlapped

);

Parameters

Name Direction Description

hDevice

Input

[in] Handle to the GPIO device on which the operation is

to be performed. To retrieve a GPIO device handle, use

the CreateFile function

dwIoControlCode Input

[in] Control code for the specific operation. This value

identifies the specific operation to be performed.

For a list of the supported control codes, see CTL_CODE.

lpInBuffer Input

[in] Pointer to the input buffer that contains the data

required to perform the operation.

This parameter can be NULL if dwIoControlCode specifies

an operation that does not require input data.

nInBufferSize Input [in] Size of the input buffer, in bytes.

lpOutBuffer Output [out] Pointer to the output buffer that is to receive the

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 29

data returned by the operation.

This parameter can be NULL if dwIoControlCode specifies

an operation that does not return data.

nOutBufferSize Input [in] Size of the output buffer, in bytes.

lpBytesReturned Output
[out] Pointer to a variable that receives the size of the

data stored in the output buffer, in bytes.

lpOverlapped Input

[in] Pointer to an OVERLAPPED structure.

*Note

lpOverlapped must be set to NULL.

Return Value

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call

GetLastError function.

5.2 CTL_CODE

The following tables describe all the control code the GPIO device driver support.

Item Name Note

1) IOCTL_ADVGPIO_GET_COUNT Gets the GPIO count.

2) IOCTL_ADVGPIO_GET_DIR Gets the current direction configuration of the

specified GPIO.

3) IOCTL_ADVGPIO_SET_DIR Configure the specified GPIO direction.

4) IOCTL_ADVGPIO_GET_STATUS Gets the current state of the specified GPIO.

5) IOCTL_ADVGPIO_SET_STATUS Sets the state of the specified GPIO.

5.2.1 IOCTL_ADVGPIO_GET_COUNT

The IOCTL_ADVGPIO_GET_COUNT control code gets the GPIO count.

To perform this operation, call the DeviceIoControl function with the following parameters.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 30

BOOL DeviceIoControl(

 (HANDLE) hDevice, // handle to device

IOCTL_ADVGPIO_GET_COUNT, // dwIoControlCode

 NULL, // lpInBuffer

 0, // nInBufferSize

 (LPVOID) lpOutBuffer, // output buffer

 (DWORD) nOutBufferSize, // size of output buffer

 (LPDWORD) lpBytesReturned, // number of bytes returned

 NULL, // OVERLAPPED structure

);

Parameters

hDevice

[in] Handle to the GPIO device. To obtain an GPIO device handle, call the CreateFile

function.

dwIoControlCode

[in] Control code for the operation. Use IOCTL_ADVGPIO_GET_COUNT for this

operation.

lpInBuffer

Not used with this operation; set to NULL.

nInBufferSize

Not used with this operation; set to zero.

lpOutBuffer

[out] Pointer to an integer (int) buffer.

nOutBufferSize

[in] Size of the output buffer, in bytes.

lpBytesReturned

[out] Pointer to a variable that receives the size of the data stored in the output

buffer, in bytes.

lpOverlapped

NULL. lpOverlapped must be set to NULL.

Return Values

If the operation succeeds, DeviceIoControl returns a nonzero value.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 31

If the operation fails, DeviceIoControl returns zero. To get extended error information, call

GetLastError function.

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Gets GPIO count.

// ---

int GPIO_GetCount (HANDLE DriverHandle)

{

 int mGpioCount = 0;

 DWORD dwReturn = 0;

 BOOL bRet = DeviceIoControl(

 DriverHandle,

 IOCTL_ADVGPIO_GET_COUNT,

 NULL,

 0,

 &mGpioCount,

 sizeof(mGpioCount),

 &dwReturn,

 NULL);

 return bRet ? mGpioCount : 0;

}

Requirements

Header: Declared in AdvGPIO_IOCTL.h.

See Also

DeviceIoControl

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 32

5.2.2 IOCTL_ADVGPIO_GET_DIR

The IOCTL_ADVGPIO_GET_DIR control code to get the current GPIO direction.

The input parameter structure, ADVGPIO_DIR_DATA, indicates GPIO direction information

and specified the index of GPIO.

The output parameter structure, ADVGPIO_DIR_DATA, report the specified GPIO direction

information.

To perform this operation, call the DeviceIoControl function with the following parameters.

BOOL DeviceIoControl(

 (HANDLE) hDevice, // handle to device

 IOCTL_ADVGPIO_GET_DIR, // dwIoControlCode

 (LPVOID) lpInBuffer, // lpInBuffer

 (DWORD) nInBufferSize, // nInBufferSize

 (LPVOID) lpOutBuffer, // output buffer

 (DWORD) nOutBufferSize, // size of output buffer

 (LPDWORD) lpBytesReturned, // number of bytes returned

 NULL, // OVERLAPPED structure

);

Parameters

hDevice

[in] Handle to the GPIO device. To obtain a GPIO device handle, call the CreateFile

function.

dwIoControlCode

[in] Control code for the operation. Use IOCTL_ADVGPIO_GET_DIR for this

operation.

lpInBuffer

[in] Pointer to an ADVGPIO_DIR_DATA structure.

nInBufferSize

[in] Size of the input buffer, in bytes.

lpOutBuffer

[out] Pointer to an ADVGPIO_DIR_DATA structure.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 33

nOutBufferSize

[in] Size of the output buffer, in bytes.

lpBytesReturned

[out] Pointer to a variable that receives the size of the data stored in the output

buffer, in bytes.

lpOverlapped

NULL. lpOverlapped must be set to NULL.

Return Values

If the operation succeeds, DeviceIoControl returns a nonzero value.

If the operation fails, DeviceIoControl returns zero. To get extended error information, call

GetLastError function.

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Gets the specified GPIO direction.

// ---

BOOL GPIO_GetDirection (HANDLE DriverHandle, UINT Index, BOOL *pbDir)

{

 ADVGPIO_DIR_DATA dirData = {0};

 dirData.uPinNumber = Index;

 DWORD dwReturn = 0;

 BOOL bRet = DeviceIoControl(

 DriverHandle,

 IOCTL_ADVGPIO_GET_DIR,

 &dirData,

 sizeof(dirData),

 &dirData,

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 34

 sizeof(dirData),

 &dwReturn,

 NULL);

 *pbDir = dirData.bDir;

 return bRet;

}

Requirements

Header: Declared in AdvGPIO_IOCTL.h.

See Also

DeviceIoControl

5.2.3 IOCTL_ADVGPIO_SET_DIR

The IOCTL_ADVGPIO_SET_DIR control code to set the current GPIO direction.

The input parameter structure, ADVGPIO_DIR_DATA, indicates which GPIO is going to set

and the new direction.

To perform this operation, call the DeviceIoControl function with the following parameters.

BOOL DeviceIoControl(

 (HANDLE) hDevice, // handle to device

 IOCTL_ADVGPIO_SET_DIR, // dwIoControlCode

 (LPVOID) lpInBuffer, // lpInBuffer

 (DWORD) nInBufferSize, // nInBufferSize

 NULL, // output buffer

 0, // size of output buffer

 (LPDWORD) lpBytesReturned, // number of bytes returned

 NULL, // OVERLAPPED structure

);

Parameters

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 35

hDevice

[in] Handle to the GPIO device. To obtain an GPIO device handle, call the CreateFile

function.

dwIoControlCode

[in] Control code for the operation. Use IOCTL_ADVGPIO_SET_DIR for this

operation.

lpInBuffer

[in] Pointer to an ADVGPIO_DIR_DATA structure.

nInBufferSize

[in] Size of the input buffer, in bytes.

lpOutBuffer

Not used with this operation; set to NULL.

nOutBufferSize

Not used with this operation; set to zero.

lpBytesReturned

[out] Pointer to a variable that receives the size of the data stored in the output

buffer, in bytes.

lpOverlapped

NULL. lpOverlapped must be set to NULL.

Return Values

If the operation succeeds, DeviceIoControl returns a nonzero value.

If the operation fails, DeviceIoControl returns zero. To get extended error information, call

GetLastError function.

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Sets the specified GPIO direction.

// ---

BOOL GPIO_SetDirection (HANDLE DriverHandle, UINT Index, BOOL bDir)

{

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 36

 ADVGPIO_DIR_DATA dirData = {0};

 dirData.uPinNumber = Index;

 dirData.bDir = bDir;

 DWORD dwReturn = 0;

 BOOL bRet = DeviceIoControl(

 DriverHandle,

 IOCTL_ADVGPIO_SET_DIR,

 &dirData,

 sizeof(dirData),

 NULL,

 0,

 &dwReturn,

 NULL);

 return bRet;

}

Requirements

Header: Declared in AdvGPIO_IOCTL.h.

See Also

DeviceIoControl

5.2.4 IOCTL_ADVGPIO_GET_STATUS

The IOCTL_ADVGPIO_GET_STATUS control code to get the current GPIO status.

The input parameter structure, ADVGPIO_STATUS_DATA, indicates which GPIO status is

going to get.

The output parameter structure, ADVGPIO_STATUS_DATA, report the specified GPIO status.

To perform this operation, call the DeviceIoControl function with the following parameters.

BOOL DeviceIoControl(

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 37

 (HANDLE) hDevice, // handle to device

 IOCTL_ADVGPIO_GET_STATUS, // dwIoControlCode

 (LPVOID) lpInBuffer, // lpInBuffer

 (DWORD) nInBufferSize, // nInBufferSize

 (LPVOID) lpOutBuffer, // output buffer

 (DWORD) nOutBufferSize, // size of output buffer

 (LPDWORD) lpBytesReturned, // number of bytes returned

 NULL, // OVERLAPPED structure

);

Parameters

hDevice

[in] Handle to the GPIO device. To obtain an GPIO device handle, call the CreateFile

function.

dwIoControlCode

[in] Control code for the operation. Use IOCTL_ADVGPIO_GET_STATUS for this

operation.

lpInBuffer

[in] Pointer to an ADVGPIO_STATUS_DATA structure.

nInBufferSize

[in] Size of the input buffer, in bytes.

lpOutBuffer

[out] Pointer to an ADVGPIO_STATUS_DATA structure.

nOutBufferSize

[in] Size of the output buffer, in bytes.

lpBytesReturned

[out] Pointer to a variable that receives the size of the data stored in the output

buffer, in bytes.

lpOverlapped

NULL. lpOverlapped must be set to NULL.

Return Values

If the operation succeeds, DeviceIoControl returns a nonzero value.

If the operation fails, DeviceIoControl returns zero. To get extended error information, call

GetLastError function.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 38

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Gets the specified GPIO status.

// ---

BOOL GPIO_GetStatus (HANDLE DriverHandle, UINT Index, BOOL *pbStatus)

{

 ADVGPIO_STATUS_DATA statusData = {0};

 statusData.uPinNumber = Index;

 DWORD dwReturn = 0;

 BOOL bRet = DeviceIoControl(

 DriverHandle,

 IOCTL_ADVGPIO_GET_STATUS,

 &statusData,

 sizeof(statusData),

 &statusData,

 sizeof(statusData),

 &dwReturn,

 NULL);

 *pbStatus = statusData.bStatus;

 return bRet;

}

Requirements

Header: Declared in AdvGPIO_IOCTL.h.

See Also

DeviceIoControl

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 39

5.2.5 IOCTL_ADVGPIO_SET_STATUS

The IOCTL_ADVGPIO_SET_STATUS control code to set the current GPIO status.

The input parameter structure, ADVGPIO_STATUS_DATA, indicates which GPIO is going to

set and the new status.

To perform this operation, call the DeviceIoControl function with the following parameters.

BOOL DeviceIoControl(

 (HANDLE) hDevice, // handle to device

 IOCTL_ADVGPIO_SET_STATUS, // dwIoControlCode

 (LPVOID) lpInBuffer, // lpInBuffer

 (DWORD) nInBufferSize, // nInBufferSize

 NULL, // output buffer

 0, // size of output buffer

 (LPDWORD) lpBytesReturned, // number of bytes returned

 NULL, // OVERLAPPED structure

);

Parameters

hDevice

[in] Handle to the GPIO device. To obtain an GPIO device handle, call the CreateFile

function.

dwIoControlCode

[in] Control code for the operation. Use IOCTL_ADVGPIO_SET_STATUS for this

operation.

lpInBuffer

[in] Pointer to an ADVGPIO_DIR_DATA structure.

nInBufferSize

[in] Size of the input buffer, in bytes.

lpOutBuffer

Not used with this operation; set to NULL.

nOutBufferSize

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 40

Not used with this operation; set to zero.

lpBytesReturned

[out] Pointer to a variable that receives the size of the data stored in the output

buffer, in bytes.

lpOverlapped

NULL. lpOverlapped must be set to NULL.

Return Values

If the operation succeeds, DeviceIoControl returns a nonzero value.

If the operation fails, DeviceIoControl returns zero. To get extended error information, call

GetLastError function.

Example Code

#include "Tchar.h"

#include "wtypes.h"

#include "winioctl.h"

#include "AdvGPIO_IOCTL.h"

// ---

// DESCRIPTION: Sets the specified GPIO status (1-On/High, 0-Off/Low).

// ---

BOOL GPIO_SetStatus (HANDLE DriverHandle, UINT Index, BOOL bStatus)

{

 ADVGPIO_STATUS_DATA statusData = {0};

 statusData.uPinNumber = Index;

 statusData.bStatus = bStatus;

 DWORD dwReturn = 0;

 BOOL bRet = DeviceIoControl(

 DriverHandle,

 IOCTL_ADVGPIO_SET_STATUS,

 &statusData,

 sizeof(statusData),

 NULL,

 0,

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 41

 &dwReturn,

 NULL);

 return bRet;

}

Requirements

Header: Declared in AdvGPIO_IOCTL.h.

See Also

DeviceIoControl

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 42

5.3 Data Structure

5.3.1 ADVGPIO_DIR_DATA

GPIO Direction Structure

DeviceIoControl's parameter uses this structure.

ADVGPIO_DIR_DATA structure is defined as follows:

typedef struct _ADVGPIO_DIR_DATA

{

 UCHAR uPinNumber;

 BOOL bDir;

} ADVGPIO_DIR_DATA, *PADVGPIO_DIR_DATA;

Members Description

uPinNumber

Specify the GPIO index in the range 0 to 7.

bDir

GPIO is Input(1) or Output(0) type.

5.3.2 ADVGPIO_STATUS_DATA

GPIO Status Structure

DeviceIoControl's parameter uses this structure.

ADVGPIO_STATUS_DATA structure is defined as follows:

typedef struct _ADVGPIO_STATUS_DATA

{

 UCHAR uPinNumber;

 BOOL bStatus;

} ADVGPIO_STATUS_DATA, *PADVGPIO_STATUS_DATA;

Members Description

uPinNumber

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 43

Specify the GPIO index in the range 0 to 7.

bStatus

GPIO status is 1-On/High or 0-Off/Low.

Advantech GPIO Windows KMDF Driver Version: <1.00>

User Manual Date: <03/16/2023>

  2023 Advantech Co., Ltd. Page 44

6. Software Utility & Programming Examples

Advantech GPIO Windows KMDF Driver package contains an example of Microsoft Visual

C++ Program. You can refer to the example to develop applications.

KMDF:

Example Name Description Tool

GPIO_Sample This example shows how to configure/manage of GPIO. VC

6.1 Advantech GPIO Utility

KMDF Source code (need to install PlatformSDK)

The sample code is located in the C:\Program

Files\Advantech\PlatFormSDK\Sample\GPIO_Sample directory.

Binary File

File Name: GPIO Utility.exe

UI:

Pin0~n

There are up to n GPIOs and could control

and monitor the direction (In / Out) and

state (On / Off).

In/Out

“In/Out” button: The GPIO Utility will

show the current direction of each GPIO

and user can set Input(1) or Output(0)

type of it.

On/Off

“On/Off” button: It will show the current

status of each GPIO. If the GPIO is

Output(0) type, user can set the status of

the GPIO(1-On/High or 0-Off/Low). If the

GPIO is Input(1) type, user can’t change

the status of the GPIO.

	1. Welcome to Advantech GPIO Windows KMDF Driver
	1.1 About This Manual
	1.2 Organization of This Manual

	2. Advantech GPIO Windows KMDF Driver Overview
	2.1 Environments
	2.1.1 GPIO
	2.1.1.1 Hardware
	2.1.1.2 Operating Systems
	2.1.1.3 Common Driver

	2.2 Product Features
	2.3 Installation
	2.3.1 Install KMDF Driver

	2.4 Uninstallation
	2.4.1 Uninstall KMDF Driver

	3. Getting Started with Advantech GPIO Windows KMDF Driver
	3.1 For Microsoft Visual C++
	3.1.1 Create an Empty Visual C++ Project
	3.1.2 Adding Necessary File
	3.1.3 Writing Codes
	3.1.4 Test Your Program

	3.2 For Microsoft Visual Studio 2015 Smart Device
	3.2.1 Create an Empty Virtual C++ Smart Device Project
	3.2.2 Include Necessary File
	3.2.3 Writing Codes
	3.2.4 Test Your Program

	4. Programming Guide
	5. Function Reference
	5.1 Function Description
	5.1.1 CreateFile
	5.1.2 CloseHandle
	5.1.3 DeviceIoControl

	5.2 CTL_CODE
	5.2.1 IOCTL_ADVGPIO_GET_COUNT
	5.2.2 IOCTL_ADVGPIO_GET_DIR
	5.2.3 IOCTL_ADVGPIO_SET_DIR
	5.2.4 IOCTL_ADVGPIO_GET_STATUS
	5.2.5 IOCTL_ADVGPIO_SET_STATUS

	5.3 Data Structure
	5.3.1 ADVGPIO_DIR_DATA
	5.3.2 ADVGPIO_STATUS_DATA

	6. Software Utility & Programming Examples
	6.1 Advantech GPIO Utility

